Face Super-resolution based-on Non-negative Matrix Factorization

نویسندگان

  • Tao Lu
  • Ruimin Hu
  • Chengdong Lan
  • Zhen Han
چکیده

Principal Component Analysis (PCA) is a classical method which is commonly used for human face images representation in face super-resolution. But the features extracted by PCA are holistic and difficult to have semantic interpretation. In order to synthesize a high-resolution face image with structural details, we propose a face super-resolution algorithm based on non-negative matrix factorization (NMF). This algorithm uses the NMF to obtain structural information representation of face images, and then the target image is regularized by Markov random fields, with maximum a posteriori probability approach. Finally, the steepest descent method is used to optimize NMF coefficient of high-resolution image. Experiment results demonstrate that the NMF-based face super-resolution algorithm performs better than PCA-based algorithms, in the subjective and objective quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Non-negative matrix factorization framework for face recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method which adds a non-negativity constraint to matrix factorization. NMF is compatible with the intuitive notion of combining parts to form a whole face. In this paper, we propose a framework of face recognition by adding NMF constraint and classifier constraints to matrix factorization to get both intuitive features...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Local Application of Non Negative Matrix Factorization Algorithm in Face Recognition

Face recognition is a challenging issue in the field of multi-science, the main contents of the research is how to make computer have the ability of face recognition face recognition technology involved in a lot, which is a key feature extraction and classification method, this paper focuses on the study of related theory. Non-negative matrix factorization trapped MF) algorithm and local non-ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011